REPORT No. 739

SHEAR LAG IN BOX BEAMS
METHODS OF ANALYSIS AND EXPERIMENTAL INVESTIGATIONS

By Pavr Kurxn and Patrick T. CHIARITO

SUMMARY

The bending stresses in the covers of box beams or wide-~
flange beams differ appreciably from the stresses predicted
by the ordinary bending theory on account of shear deforma-
tion of the flanges. The problem of predicting these differ-
ences has become known as the shear-lag problem.

The first part of the paper deals with methods of shear-
lag analysis suitable for practical use. The basic elements
of these methods have been published in previous papers,
but the treatment of these methods presenied in this paper i3
consolidated and improved in several respects. The
methods are sufficiently general to cover any arbitrary span-
wise rartation of crose section and loading as well as
chordurise variations of stringer area, stringer spacing, and
sheet thickness. Methods of analyzing the effects of cut-
outs are also given.

The second part of the paper describes strain-gage tests
made by the NACA to verify the theory. Three tests were
made on axially loaded panels of variable cross section, gix
were made on beams of variable cross section, and three
were made on beams of constant cross section for extreme
or limiting cases. Three tests published by other investi~
gators are also analyzed by the proposed method.

In order to make the test of the theory as severe as possible,
the NACA specimens were designed to show larger shear-
lag effects than may be expected in typical present-day
construction. The agreement was quile satigfactory even
in extreme cases such ag very short wide beams. Satis-
factory agreement was also found in fests on the Limiting
case of a cover without gtiffeners; this agreement shows
that the theory 13 applicable to the case of heavy cover
Pates used without stiffening or to cdses in which contin-
uous gtiffening in the form of corrugated sheet iz used.

The third part of the paper gires numerical examples
tllusirating the methods of analysis. An appendiz gives
comparizsons with other methods, particularly with the
method of Ebner and Koller.

INTRODUCTION

The bending stresses in box beams do not always
conform very closely to the predictions of the engineer-
ing theory of bending. The devistions from the theory

are caused chiefiy by the shear deformations in the
cover of the box that constitutes the flange of the beam.
The problem of analyzing these deviations from the
engineering theory of bending has become known as the
shear-lag problem, a term that is convenient although
not very descriptive.

The most important case of shear-lag action occurs in

the wing structure. The cross section of the wing usu-
ally varies considerably along the span; analytical solu-
tions based on the assumption of constant cross section
are therefore of little practieal value, and methods of
analysis have had to be developed to cope with the con-
ditions found in actual struetures. The development of
such methods has been continued over a period of several
years (references 1 to 3) and it is now possible to give
a reasonably well-rounded presentation of practical
methods of analysis.

The paper is divided into three parts. The first paré

discusses the methods of analysis. The second part

describes tests made by the NACA and shows compari-
sons between experimental and calculated results for
the NACA tests as well as for tests made elsewhere.
Numericsal examples to illustrate the methods of analysis
are presented in the third part.

The method of presentation chosen is intended to
meet the needs of the practicing stress analyst. The
paper contains the information actually needed in stress
analysis. Detailed derivations and discussions have
been omitted, but they may be found in seversal of the
cited references.

I. METHODS OF ANALYSIS

DEFINITION OF THE PROBLEM AND BASIC
ASSUMPTIONS

Reduced to its simplest form the problem may be
stated as follows: A sheet, stiffened or unstiffened, is
fastened to a foundation along one edge and loaded
along the two edges perpendicular to the foundation by
distributed or concentrated forces as indicated in
figure 1. The sheet may be & structure in itself
(fig. 2 (a)) or it may be the cover of a box beam (fig. 2 (b)).
The problem is.tq find the stresses in the sheet. '
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FIGURE 1.

As shown in figure 1, stiffeners are theoretically
necessary along the loaded edges if concentrated forces
P sare introduced because the stresses would otherwise
become infinite. These edge stiffeners will be referred
to throughout this paper as “corner flanges” or simply
“flanges.” Other stiffeners parallel to the loaded edges
will be referred to as “longitudinals’” or “stringers’’;
these stiffeners may or may not exist in any given case
and may or may not be attached to the foundation.

It will be assumed that the structure is elways
symmetrical about a longitudinal plane (y=0). This
assumption materially simplifies the problem without
decreasing the practical usefulness of the theory very
much because most practical structures are at least
approximately symmetrical. On account of the sym-
metry, it will be sufficient to consider one-half the
structure in all derivations and computations,

It will be assumed that infinitely many ribs of infinite
extensional (chordwise) stiffness are distributed along
the span. An equivalent assumption is frequently
made in theoretical solutions of stress problems. The
assumption is plausible in this case because it is fairly
obvious that the extensional stiffness of the ribs together
with the lateral bending stiffness of the flanges between
the ribs is sufficient to take care of such transverse
stresses as might arise from longitudinal forces and
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stresses. The final proof that the assumption of rigid
ribs is admissible must, of course, be furnished by experi-
ments like those.described in the second part of this
paper. -

The field of shear-lag analysis is very extensive; it
was therefore considered advisable to confine the dis-
cussion, in general, to beams with flat covers. The
most general method of analysis given in this paper can
be very readily extended to beams with cambered covers

.....

FIGURE 2.

:

_on this type of structure.
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and this extension is therefore given. An approximate
method for dealing with moderate amounts of camber
is given in reference 2.

ANALYSIS OF SINGLE-STRINGER STRUCTURES

Structures like those shown in figure 2, having but a
single stringer, are rarely encountered in practice.
Nevertheless, the analysis of single-stringer structures
will be fully discussed for several reasons. The immedi-
ate reason is that the fundamental relations as well as
all the methods of analysis can be easily demonstrated
A more important reason is
the fact that the most rapid method of analyzing multi-
stringer structures is based on the temporary reduction
of the multistringer .structure to a single-stringer

structure.
SIGN CONVENTIONS

The sign conventions adopted are as follows: Normal
stresses and strains in the stringers and the flanges are

Ficure 3.—Convention for coordinate axes.

positive when they are fensile. Shear stresses and
gtrains in the cover shéet are positive when they are
caused hy positive strains in the flange. Shear stresses
in the web are positive when they are causing positive
strains in the flange.

The compression side of the beam is analyzed inde-
pendently of the tension side. It is therefore permis-
sible and convenient to retain the sign convention just
given for the analysis of the comprestion side, changing
only the definition of stringer stresses to positive when
compressive.

In general, the positive directions of the coordinate
axes will be taken as shown in figure 3. In some cases,
particularly for analytical solutions, it is more conven-
ient to use the opposite direction for the positive x-
direction because the resulting formulas are simpler,
(See, for instance, formulas for axially loaded panels,
references 1 and 2.)

FUNDAMENTAL EQUATIONS AND ANALYTICAL SOLUTIONS

For purposes of shear-lag analysis, all structures are
idealized in & manner familiar, for instance, from the
design of plate girders. Stringers are assumed to be
concentrated at their centroids; the idealized sheet is
assumed to carry only shear, but the fact that the actual
sheet cerries longitudinal stresses in addition to the
shear is taken into account by adding the well-known
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effective width of the sheet to the stringers. The
participation of the shear web in the bending action is
expressed by adding X hiy to Ay, which makes the
section modulus of the idealized section equal to that of
the actual section. Figure 4 shows the idealized cross
sections of a single-stringer panel and of & single-stringer
beam; the standard basic symbols used in this paper are
indicated in this figure. A complete list of symbols is
given in appendix A. .

Figure 5 shows an idealized single-stringer beam of
constant cross section subjected to & transverse load at
the tip. Inspection of the free-body diagrams in figure
5(b) shows that there are two equations of static
equilibrium,

dzr

dF’=SWIT_dS° (1a)

dFL=dS; (1b)
where Sy is the shear force in the web, in this case equal
to P; and dSg=ridz, where 7 denotes the shear siress in
the cover sheet.

Under the assumption of infinite transverse stiffness,
the relative longitudinal displacement (ur—uy) of two
corresponding points on the flange and on the longitudi-

F1guxk 4.—Convention for symbols on cross sections.

nal divided by the width & defines the shear strain v and.

therefore the shear stress r (fig. 5 (c)).
displacements « are given by the expression

fmidz:
v= :=LE

differentiation gives the basic elastic relation

Because the

dr=—E£b(a'p—a';_)dx (1e)
where (7 is the effective shear modulus, which takes into
account the effects of buckling when necessary.
Equations (1a), (1b), and (1¢) can be combined to form
& differcntial equation, and this equation can be solved
for simple cases. A number of solutions are given in
references 1 and 2; similar solutions have been given by
other authors. These analytical solutions aere of some
value in making comparative studies and in studying
various aspects of the shear-lag problem. For practi-
cal stress analysis, however, numerical methods capable
of dealing with arbitrary variations of cross section and
loading are required. Two such methods will be
described: The solution by means of a recurrence
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formula and the solution by successive shear-fault
reduection.

ANALYSIS OF SINGLE-STRINGER STRUCTURES BY THE
RECURRENCE FORMULA

Principle and scope of method.—The principle of
analyzing a beam of variable cross section is as follows:
The beam is divided into a convenient humber of bays
in such .a way that the cross section and the running
shear in the web Sp/h may be assumed to be constant
within each bay. The shear deformation in the cover
sheet of each bay is computed in terms of the unknown
forces acting between bays. Application of the princi-
ple of consistent deformations then gives & set of
equations, similar in form to three-moment equations,
for the unknown forces. ) '
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FigURE 5.—Free-body disgrams of beam.

Theoretically, the method permits taking into account
any variation of cross section and loading along the
span. The limitations are similer to those encountered
in other problems of stress distribution in cases of
variable cross section and loading.

Recurrence formula for shear lag.—As stated in the
preceding section, the beam is divided into & number
of bays; the cross section and the web shear Sy/k are
assumed to be constant within each bay. The lengths
of the bays need not be equal nor need they be small,
as is often required in similar methods. In the limit,
a single bay may span the entire length of the beam.
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The system of numbering the stations and the bays
between stations is shown in figure 6.

Each individual bay can now be treated as a free
body subjected to certain forces (fig. 7). These forces

can be split into two groups (fig.8): One group consists

of the forces calculated by the ordinary bending theory,
which sssumes no shear deformation; the other group
represents the differences between the actual forces and

r {r-/ n+ti{ n 2 /

Ly nt n n-/ 2 i 0

r=/
F1gurE 6.—Oonvention for numbering bays and statfons of & beam.

the forces of the first group or, in other words, the
changes in forces caused by the shear deformation of
the cover sheet.

The first group of forces will be designated P-forces
to indicate that they are calculated by the theory that
assumes plane sections to remain plane. Individual
forces and stresses belonging to this group will be de-
noted by a superscript 7 The calculation of these
forces and stresses is familiar to every engineer and
consequently need not be discussed in detail.

The second group of forces will be deslgna.ted X-forces.
Because the P-forces on any one bay are in static equilib-
rium, the X-forces at any one station must be a self-

n-1
F1aURE 7.~ Free-body diagrams of bays.

equilibrated group longitudinally; that is, at any given
station the force X, acting on the flange must be equal
and opposite to the force X, a,ctmg on the longitudinal.
This conclusion was anticipated in figure 8 by writing
X without the subscripts F and L.

The shear deformation of the cover sheet can now be
calculated in terms of the known P-forces and the
unknown X-forces; the details of this calculation are
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given in reference 3. Equating the deformations at
the adjoining ends of successive bays yields the
recurrence formula

Xu—l-Qn_Xu(pn'l'Pu-.l-l) +Xu+lmn+l=_“7:+ Fail (2)
where
- K (38)
Pv=0t tanh KL )
=g s R (3b)
SWAL _SW QL R (3c)

where K is a shear—lag parameter appearing in  all

(a) P-forces.
(b) X-forces.

F1GURE 8.—8epsration of forces acting on bays,

analytical solutions for single-stringer structures

(references 1 and 2) and is defined by

Gt
E=m A,“LAL)

In equations (3a) to (3c), cach individual quantity
should be understood to have a subscript n, indicating
the average value for the bay in question. Note
should be taken that this statement applies to L, which
is to be taken as the length of the individual bay in
question, not as the length of the entire beam.

Strictly speaking, all coefficients v appearing in this
paper should have a superseript P. Thesc superseripts
have been omitted because they are not needed in the
actual use of the equations; they are needed only in
the derivation of the equations (reference 3).

(4)

L]
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Written in more explicit form, the equations are

Xoi— Xi(01+p) + Xae=—71+ 72
-th’z—Xz(pz‘I'P:) +Xa§h—'—')’z+ vs

(5)

A.-xq- X (Pu+17n-1) +Xu+lgu+[=—7n+71+l

r('pr_'l'pr{-l) =—1v+ Yri1

—Yr—lgr_
It will be noted that the externally applied load appears
only in the coefficients v; for any given beam, then,
the left-hand side of the equations remains unchanged
if cha.nges oceur in the loading.

|
T
| [@‘
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practice when a wing is joined to carry-through mem-
bers passing through the fuselage. Case 3 has been
used in practical design to- facilitate the assembly of
the wing to the fuselage by reducing the number of
bolts to & minimum. '

The foundation may be considered as bay r-1.
In case 1 there is no shear deformation of bay r+1,
and p,i; 8s well as vy equa]s zero. In case 2, v
equals zero, because no shear is carned in bay r41;
the deformation of the bay depends only on the axial
stifinesses of the flange and the longitudinal passing
through the fuselage, and

1 1\ L . '
DPrp1= (—A—r +A_L)6_E | (7)

Fiaurx 9.—Boundary conditions at tip.

Boundary conditions.—Before the system of equa-
tions (5) can be solved, the boundary conditions at the
tip and at the root must be defined. At the tip, the
following ceses mey arise: -

(1) Only a transverse force is applied (fig. 9 (a)).
In this case, X3=0.

(2) A longitudinal force P ma.y be introduced
- (fig. 9 (b)). In this case

Xo=P7~ (6)

When the Jongitudinal force P is the only force applied
to the beam, the idealized shear web is inactive, and
the problem is that of an axially loaded panel.

At the root, the following cases may arise:

1. The flange and the longitudinal are connected
to a rigid foundation.
. The flange and the longitudinal are connected
"to a foundation that deforms under load.
3. The flange is connected 'to the foundation; the
longitudinal is not connected.

This system of classifying the possible cases is based
on the convention of defining the foundation as the
station where the vertical shear is taken out.

Case 1 at the root arises in practice when a wing is
continuous from tip to tip. The plane of symmetry is
equivalent to 2 rigid foundation. Case 2 arises in

IO

where L is the distance from the wing root to the plane

of symmetry of the airplane.
In case 3 the last equation of the system cannot be

used, and X is found by inspection to be

M Ay
hw Az ®

Calculation of stresses from X-forces.—After the
system of equations (5) has been solved, the longi-
tudinal stresses are found by superposing on the
stresses calculated by the ordinary bending formula
the stresses calculated from the X-forces

oF= 0'rP+X/Ar

X, =1

(92)

and .
o= U’LP —X/ AL (Qb)

where o is the stress calculated by the ordinary bend-
ing formula. In the case under discussion, where the
beam has no camber,
M
UFP—' ULP=E
The running shear in the cover sheet of bay a close
to the inboard end of the bay, that is, close to station n,
is given by the formula

(10)

K,

(Tf):;=<SH4.: '+X -1 m'_nh%{'.,_ﬂ,.—x" m (118,)
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Near the outboard end of bay n, that is, near station

n—1, the running shear in the cover sheet is
_(S4, K, K,

(")"o—(m, X fomh BT, X SR KL,

(11b)

For some applications it is desired to compute the
average running shear in a bay. If the bay is not too
long, this average shear may be obtained by averaging
the shears at the two gnds of the bay computed by the
formulas just given. The result is

%Aé: “_%Gt(Xn—X —1) (Pu+q::) (110)

(rh)ae=
An alternative way to compute the average shear is
to use the basic static relation (1b)

(TtL),;:FLl— FLI—I (1 ld)
Formule (11d) gives the true average; formula (l1c) is
approximate.

Influence of taper in depth and width.—When a
beam is tapered in depth, it is necessary to remember
that part of the vertical shear is carried by the inclined
flanges and longitudinals, so that

Sw=Se—p tan i (12)
where 1 is the inclination of the tension flange with
respect to the compression flange.

WEén & beam is tapered in width, neither the ordi-
nary bending theory nor the shear-lag theory is strictly
applicable. 'The error caused by applying the ordinary
bending theory, however, is small for normal angles of
taper; to a similar degree of approximation, the follow-
ing approximate method of shear-lag calculation may
be used. _ .

Assume that the taper is removed by making the
widths b at all stations equal to the width b, at the root.
At the same time, increase the sheet thicknesses in the
ratio b,/b. The result will be an untapered beam that
has the same shear stiffness Gifb at any station as the
actual beam. This method of protedure assumes that
transverse components of longitudinal forces can be
neglected; this assumption is in keeping with the
assumption of rigid ribs. .

It should be noted that the parameter K (cquation
(4)) in any bay of the fictitious untapered beam is equal
to the corresponding parameter K of the actual tapered
beam, but the coefficients p, ¢, and v of the fictitious
beam differ from those of the actual beam by the ratio
b/b,. It is stated in reference 3 that the effect of taper
in plan form might be more pronounced than is indicated

by the method just given.  Re-examination of the test

data in the light of the additional test experience gained
since reference 3 was written tends to show that the
method given here is sufficiently accurate for the taper
ratios likely to be encountered on wings.
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ANALYSIS OF SINGLE-STRINGER STRUCTURES BY SUCCESSIVE
SHEAR-FAULT REDUCTION

Principle and scope of method.—The principle of
the method of successive shear-fault reduction is as
follows: .

An estimate is made of the stresses o in the flange;

‘the stresses o, in the longitudinal are calculated by

statics. By the application of the basic equation (lc)
and a process of numerical integration, the spanwise
distribution of shear force in the sheet can then be cal-
culated. On the other hand, application of the basic
equation (1b) also gives a spanwise curve of shear force
in the sheet. The two curves will not agree except by
accident because the estimated values of ¢r and o will
not fulfill the elastic relations and the boundary condi-
tions except by accident. The difference between the
two curves will be referred to as the curve of “shear
faults.”

The existence of shear faults in the calculation proves
that the assumed stresser or do not constitute the true
solution of the stress problem for the specified external
loads. The assumed stresses or constituie, however,
the true solution for a closely related problem, namely,
the structure subjected to the specified externsl loads
and, in addition, subjected to a system of exiernal
loads equal to the shear faults. Obviously, then, the
desired solution can be obtained from the assumed solu-
tion by deducting the effects of the shear faults. This
deduction is effected by superposing the effects of cor-
rective external shear forces that are assumed to be
applied in opposite direction to the shear faults.

If the magnitudes of the corrections were made equal
fo_the faults, the basic static equation (1b) would be,
fulfilled at each station but the basic clastic relation
(1¢) would be upset. As a compromise between these
conflicting requirements, the correction is made equal
to one-half the fault.

Because transverse forces are absorbed by the rib
system and are not comsidered, the introduction of an
external shear is equivalent to the introduction of a pair
of equal and opposite forces. By St. Venant’s princi-
ple, the influence of such a combination of forees is felt
over only a limited distance. In order to simplify the
computation, it will be assumed that the influence of
each corrective force decreases to zero at the next sta-
tion. Errors introduced by this simplification will be
small and will eventually be eliminated by repeating
the process of correction.

Application of the corrective forces to the initially
assumed values of or and o, yields a new set of valucs
for o and oy, and the entire process is repeated. It will
be found that the corrective forces are becoming smaller
with each repetition of the process, so that the solution
will be obtained by a svfficient number of repetitions.
In theory, the computation is finished when the correc-
tions to. or and o, are reduced to one unit of the last
significant figure of or or o,. In practice, the compu-
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tation will often be finished sooner at the dmcretlon of
the analyst.

For single-stringer structures, the method of succes-
sive shear-fault reduction is unlikely to be favored over
the recurrence formuls because the fime required for a
solution depends very much on the ability of the analyst
to make s good initial estimate of or and . The time
required for a solution by means of the recurrence for-
mula, on the other hand, is almost independent of the
gkill and the experience of the analyst because the only
item left to his choice is the number of bays. The
method of shear-fault reduction for single-stringer
structures, however, is the direct basis of the most
general method for analyzing multistringer structures,
and this fact justifies the description of the method.

Method of successive shear-fault reduction.—In
order to apply the method of shear-fault reduction, the
beam is divided into & convenient number of bays.
Because the computation involves numerical integra-
tion and differentiation, the lengths Az of these bays
must be chosen fairly small so that no appreciable error
is made by assuming the stresses to vary linearly in
each bay. Five bays may be considered as the mini-
mum. In order to reduce the time required for com-
putation and the possibility of errors, the bays should
be made of equal lengths whenever feasible.

The computation is started by tabulating for each
station the given magnitudes of Ar, A;, ¢, G, and M/h
(or P) if they vary along the span. If the beam tapers
in width, a fictitious beam of constant width is used, as
previously discussed.

The magnitudes just enumerated should be separately
tabulated because they will remain constant; whereas,
the meain part of the calculation is repeated a number
of times. The details of the procedure are learned most
easily by following column for column the numerical
example given in part I, table 10.

Column 1 in table 10 gives assumed values for op.
In assuming these stress values, the analyst must be
guided by previous experience. It is possible to use
entirely arbitrary values but, if the assumed values
differ too much from the true ones, a large number of
cycles of the computation will be required. The
simplest procedure for general use is to multiply the
stresses obtained from the ordinary bending theory by
a factor slightly larger than unity. With some ex-
perience, this factor can be estimated reasonably well
from a knowledge of the average of the shear-lag pa-
rameter KL and the loading condition.

Column 2 gives the forces Fr=arAr.

Column 3 gives the forces FL=‘%—FF in the case df

a beam or F=P—Fp in the case of an axially loaded
panel.
Column 4 g1ves the stresses aL—FI,/AL
Column 5 gives the differences between columns 1 and
4 (op—or).
€T8010 O - 46 -2

Column 6 gives the increments of shear stress
obtained from the basic relation (1c),

se—— G =0 S8Y

It will be noted that the values of Ar in column 6 are
positive. This sign arises from the fact that the integra-
tion of the shear-stress increments proceeds from the
root to the tip so that the increments Az are negative.

Column 7 gives the shear stresses r in each bay.
These stresses are obtained by adding up the inecrements
Ar given in column 6, starting a6 the root where r=0.
It should be noted that the values of Ar represent the
increments of shear stress for intervals of length Az
along the span; the distance between the root and the
middle of bay  i8, however, only half an interval Az, so
that the value of 7 in the root bay is r=}Ar.
here on, the full value of Ar is added each time, unless
the value of r at the tip is to be calculated when & one-
half step would be used again. (The value of = at the
tip is needed for the calculation of the margin of safety
but it is not needed for the caleulations indicated in
table 10. Consequently, this value is calculated only
after the last cycle has been completed.)

F L F L

Ady Ady
I é
SFCi Isr ..S?'l f sFre
{ i

G (v)
A2 7777777707777
FicURE 10.—Shear fanlt and shear-fault correction.

Column 8 gives the increments of shear force
ASex=ritr (S8-2)
Column 9 gives the increments AFy, obtained by sub-
tracting the value of F, at the outboard end of the bay
from the value of F; at the inboard end of the bay.
According to the basiec relation (1¢), AF, should
equal ASgx in each bay. The differences in each bay
constitute the shear faults -
SF = AScx— AF L

and the shear faults SF are given in column 10.

(88-3)

Consider now figure 10 (&), which shows one bay with ’

a positive shear fault SF and the corresponding shear-
fault correction SFC; SFC is in the form of external
forces distributed uniformly along the bay.

The length of & bay is small compared with the length
of the structure; it may therefore be assumed that the

From’
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properties of the structure just outboard and just in-
board of the bay considered are the same. Under this
assumption, one-half of the shear-fault correction SFC
will be absorbed by the structure outboard of the bay;
the other half will be absorbed by the structure inboard
of the bay. As previously stated, the total shear-fault
corrective force will be taken as one-half the shear fault.

Total SFC=— %SF (SS-4)

Therefore the corrective force at the outboard end of
the bay will be

SFC,— —2SFC—=SF (SS-5a)
and the corrective force at the inboard end of the bay
will be
SFC=3SFO=—2SF  (S3-5b)
The corrective stresses Aoy and Ag; are found by divid-
ing the corrective forces SFC, and SFC; by the areas
Ag or Ay and are shown in figure 10 (b). The signs of
the corrective stress Aoy are the signs given in formulas
(SS-5a) and (SS-5b), while the signs of the corrective
stresses Agy are opposite to those given in formulas
(SS-5a) and (SS-5b) (fig. 10 (b)).
At the tip station there is no outboard structure to
develop any resistence to the shear-fault correction

force. Consequently, for the tip bay
SFC,=0 (SS-5¢)
SFC/=SFC—=ZSF (5S-5d)

In the numerical example (table 10) it will be seen
that column 11 lists the values of SFC, and column 12
lists the values of SFC,. At each station there is one
value of SFC, and one value of SFC;. The sum of the
two values is the final value of the shear-fault correc-
tive force and is tebulated in column 13

Column 14 gives Acrp=SFC/[Ay, and column 15 gives
Aoy=—8SFC[A;. .

The addition of the corrections Acr to the initially
assumed values of o and of the corrections Ac,, to the
initial values of oy, gives a new set of values for o and ;.
The entire process is then repeated as indieated in

table 11 but the column giving Fy is no longer needed.

The entire calculation as shown in table 11 is re-
peated again and egain until successive sets of values
of o7 and oy, are judged to agree with sufficient accuracy.
The limit of possible accuracy is reached when the
values of Aoy or Agg become equal to unity in the last
significant figure of or or 0% . o

In order to aveid carrying slong crrors, F;, should be

obtained from the static equation F,;,=-%£—FF every

second or third cycle instead of from Ag;.

The sum of the shear faults may be used as an indica-
tion that correct sign conventions have been used; the
sum of the faults in any given cycle must be smaller
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than the sum of the faults in the preceding cycle. This

criterion is not sufficiently sensitive to prove the absence

of any numerical error, but it is sometimes a welcome
help when starting calculations,

A complication arises when the longitudinal is not
connected at the root. In this case, the stress oy is equal
to zero at the root but the shear stress  is not cqual to
zero. It is therefore impossible to proceed directly
with the summation of the increments Ar,  In order to
overcome this difficulty, a trial value =, for r at £=0
is assumed, and the summation proceeds from this trial

value. From statics, it is evident that
z=L

ch - Z ASC'R =
=l

The trial value 7, must therefore be negative, in order
that the summation of the incremenis ASqx along the
entire span may be equal to zero. On the first trinl,
this condition will not be met except by accident, and
the trial value for 7, must be adjusted until the given
condition is met. Speaking graphically, the process
consists in finding the area between a curve (the ré-
curve) and an arbitrary horizontal line and then
shifting the horizontal line until the area becomes zero.
After the first eycle has been completed, the value ry
obtained can be used as a trial value for the second cyele,
and it will be so close that the necessary adjustment will
be small.

When the longitudinal is discontinuous at some point
other than the root, the summation of the incremenis Ar
may be performed in the usual manner for the region
between the root and the inboard end of the brenk.
The region from the outboard end of the break to the
tip is treated in a manner analogous to that just dis-
cussed_for a longitudinal discontinuous at the root.

Tn a cambered beam, the basic equation (1¢) must be
modified to read

dr=— g2 ((or—e) (e = dr  (ie')
as shown in reference 2. In this cquation, ¢" is the
stress in the flange caleulated by the usual Afe/J formule,
and o7 is the stress in the longitudinal ealeulated by the
Me/T formula. In the case of a flat cover, o#” equals
o:F and they cancel, reducing equation (1¢’) to cquation
(1c). When a beam is analyzed by the shear-fault-
reduction method, formula (SS-1) must be modified to
conform with formula (1¢). An additional column will
therefore be required after column 5 in table 10.

ANALYSIS OF MULTISTRINGER STRUCTURES

Two methods will be given for the analysis of multi-
stringer structures. The first method consists in reduc-
ing the problem to that of a fictitious single-stringer
structure that can be analyzed by the recurrence.
formula. The final step of transferring back to the
actual multistringer structure can be made only under
the assumption that the chordwise distribution of
material—stringers and sheet--is uniform and that the
moduli E and @ are constant along the chord. Small -
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variations from uniformity can be disregarded but,
when large variations exist, it is desirable to have a
more general method available.. For such cases, a
method of successive shear-fault reuction is descrited
that is an extension of the method of successive shear-
fault reduction described for single-stringer structures.
This method permits taking into account arbifrary
chordwise variations of stringer size, stringer spacing,
sheet thickness, and elastic moduli.
SUBSTITUTE SINGLE-STRINGER METHOD

Principle of method.—The transverse bending loads
acting on & box beam are teken up first by the shear
webs. The shear stresses in the web are partly con-
verted into normal stresses at the flange; the rest of
the stresses become shear in the cover sheet, which is
gradually converted into normal stresses in the longi-
tudinals as the longitudinal plane of symmetry is

approached. It may be said, therefore, that the most |’

important physical action centers around the flange
because the conversion of sheasr stress into bending
stress begins here.

This consideration leads to a very convenient method
of analyzing a multistringer structure by substituting
temporarily a fictitious single-stringer structure. This
fictitious structure retains without change those parts
of the actusl structure in which the primary and the
most important action takes place, namely, the shear
web, the corner flange, and the sheet adjacent to it.
The longitudinals, however, are combined into a single
fictitious stringer, the *‘“substitute single stringer,”
located at the centroid of the internal forces in the
stringers. The enalysis of the resulting single-stringer
struciure can be performed by the methods previously
described and gives the sctual stress in the flange
(equation (9a)) es well as the actual shear stress in the
cover sheet next to the flange (equations (i1)). For
the stress in the longjtudinals, only an average value is
obtained by the analysis of the fictitious single-stringer
structure. The stresses in the individual longitudinals
of the actual structure are calculated at any given sta-
tion along the span by assuming that the average
stress just calculated is distributed chordwise according
to the hyperbolic-cosine law found in such analytical
solutions as have been published.

The validity of the substitution method outlined
can be made plausible in & general way by reference to
St. Venant’s principle. A much more convincing proof,
however, will be given by the comparisons between
experimental and calculated resuits in the second part
of this paper.

Determination of the substitute single-stringer sfruc-
ture (firs{ approximation).—A typical cross section of a
multistringer structure is shown in figure 11 (a). This
cross section is idealized as indicated in figure 11 (b).
It should be noted that the effective width of skin
adjacent to the flange is considered as a longitudinal
distinet from the fiange. The adoption of this rule
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makes it feasible o cover all possible cases with a single
rule because in & limiting case such as shown in figure
1, for instance, obviously the entire sheet should be
considered as constituting the longitudinals. Inciden~
tally, this rule tends to reduce the error due to the finite.
number of stringers that will be discussed.

— b,—.nlb,t— I—f[ [
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©

FiGURE 11 —Idealization of multistringer cross section.

The width d of the idealized sheet between longitu-
dinsals depends on the spacing b; between rivet rows and
on the type of the stiffeners. Open-section stiffeners
(fig. 12(a)) do not contribute to the shear stiffness of
the cover; therefore, d=5;. Closed:section stiffeners

(fig. 12 (b)) contribute to the shear stiffness of the cover. | _

If this contribution is taken into account, the idealized
width for shear deformation is d=>5;-4-bs,, It which

by
1+‘

bze_

where {,, is the thickness of the stiffener and p is the

perimeter, or developed width, of the stiffener between
rivet rows.

&= — Arp -
@ G

FI1GCRE 12—Htandard symbols for width of panels

The idealized multistringer structure (fig. 11(h)) is

now converted into a single-stringer structure by com-
bining all idealized longitudinals into a single longi-
tudinal located at the force centroid of the longitudinals.
Because the actual sfresses are not known &t this stage,
the stresses computed by the ordinary bending theory
are used to obtain a first approximation.

For the flat

5 s .
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covers under consideration, the force centroid will then
be the centroid of the cross-sectional areas of the
stringers, the Me/I stress being the same in all stringers.
The distance of this centroid from the flange is the
width bs of the substitute structure (fig. 11(c)). The
substitute structure can be analyzed by the recurrence
formula or by any other method if desired. If a second
approximation is to he made, the calculations made for
the first approximation can be confined to finding the
stresses o in the flange and o, in the longitudinal of

In order to facilitate the determination of Y0, figure
13 has been prepared. With the help of this figure;
Yb can be determined by inspection after computing
the ratio azfor. The stress at the center line is then
computed by the formula

- : G'CL'—'-'G'p/COSh ¥b (16)
In order to compute the stress in any stringer at a given

distance y from the center line, it is only necessary to
compute Yy=(¥Yb}X(y/b} and to apply formula (14).

the single-stringer structure. Formulas (14) to (16} apply only when 0<orfor<1.
12— R . . . . — .- e e
19 —t— : e
, | Yo—>or/a L
U N | \ | \rove /// 10Yb
vo bt " \\ \ / NN
6 - o . _- - —t p cenf—— Ty " UVUEY pR
YH \
2F — . : \ / — -
- Yo : S Yb Asympfofe
 Asymprofe ' ' - — '
-gB -6 - -2 () 2 T4 6 g 10 L2 Y.L T 18 20

%o/ O
FiovRE 13.—Auxillary graph for determining chordwise distribution of stresses,

Chordwise distribution of stresses,—The analysis of
the substitule single-stringer structure furnishes the
flange stress or and the chordwise average of the stresses
in the longitudinals for all stations along the span. The
actual chordwise distribution of the stresses may be
obtained in the following manner, as explaihed in
reference 1. : :

For the limiting case of infinitely many stringers,
some analytical solutions have been obtained in the
form of solutions for the continuous cover sheet,
These solutions show that the chordwise distribution
of the stringer stresses at any given station follows a
hyperbolic-cosine law. The stress at a distance ¥
from the center line may therefore be written as

o= O'CLCOSh }’y ' (14)

where Y is an auxiliary parameter and ¢y, is the value
of ¢ at y=0. In this equation, both the stress o, in
the longitudinal! at the center line and the auxiliary
parameter Y are unknown. Two conditions are avail-
able to determine these unknowns: (1) The average of
the stresses ¢ between y=0 and y=»5 must. be equal to
the stress o5, of the substitute single stringer, and (2)
at the flange y=>5, the stress ¢ must cqual the stress
or. The result is & transcendental equation for YB3,
tanh Yo gL
Y6 e

R ¢ 1|

In regions critical for design work, this condition is
probably always fulfilled. For eertain purposes such
as checking the theory against experimental results,
however, it may be desired to calculate the chordwise
stress distribution at stations where the ratio o./or falls
outside .of this range. It was proposed in reference |
to replace formulas (14) to (16) for such cases by

e=ccr(2—cosh Yy (14a)
2_sinh Yb _
Yo o . (1Bu),

2—cosh Y o»
o= 0‘;/(2—0051’1 Yb) ( 1 6&)

Formula (15a) was used instead of formula (15) to
extend the range of the Yb-curve in figure 13. It will
be noted in figurce 13 that the Ybd-curve for very small
negative values of ¢.for does not become infinite as
would be expected by analogy with small positive
values. This peculiarity is caused by the approximate
nature of equation (14a) and is of no practical im-
portance. -

Correction of chordwise stress distribution for finite
number of stringers.—The method of computing string-
er stresses by using formula (14) is based on the assump-
tion that the stringers are infinitely closcly spaced. If
the spacing of the stiffencrs is finite, the total internal
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foree will be found by a summation instead of an inte-
gration, and the internal force will differ somewhat
from the external force. The magnitude of the error
depends on the number of stringers and on the curva-
ture of the chordwise stress plot, which is characterized
by the ratio ./os or by the parameter V5.
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Freurk 14.—Error in total force caused by finite pumber of stringers. ®, number of
stringers, except siringer contiguous to flangs.

The sign of the error depends on the location of the
first stringer near the flange. Under the rules given

for idealizing the multistringer cross section, the first.

full-size stringer is located at y=8& (1—1/n), where n
is the number of stringers (arrangement A, fig. 14).
For this case the summation of the stringer forces will
yield a smaller force than is necessary to balance the
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external load.

If a full-size stringer were located at _

the edge y=>b (arrangement B, fig. 14), the summation

of the stringer forces would yield too large & value.
As long as Y5 is less than about 1.5, the errors for these
two cases are numerically equal and are shown in
figure 14.

The rule that the effective. width of skin adjacent to
the flange should be considered as a stringer (fig. 11 (b))
helps to reduce the error by bringing the actuel case
between the two extreme arrangements A and B of
figure 14. In practice, the ratio of the actual force to
the summation of the calculated stringer forces may
be applied as a correction factor to the calculated
strmger stresses as llustrated by the numerical example
in part III. This method of correction was used in
the analysis of all NACA tests described in part II
with very satisfactory results, even in some quite
extreme cases; it was also used with very satisfactory
results in making comparisons with the Ebner-Koélier
method. (See appendix B.) If the results obtained
by this method should be considered as too inaccurate,
the method of successive shear-fault reduction may be
resorted to for improving the accuracy of the results.

Successive approximations for substitute width.—By
definition, the substitute width is the distance from the
flange to the force centroid of the stringers. For in-

| finitely many stringers, the centroid can be found by

integration (reference 2), and its location is shown

graphically in figure 15. The substitute width is
given by the expression
be=(1-%)s a7

In any given case, the factor 1—(y./b) is taken from
figure 15, and b is the effective width for shear deforma-

tion as defined by figure 11 (b).
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Fiivrk 16.—Ursph for locating resultant internal forco.
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In order to use figure 15 it is necessary to know the
parameter Yb; for this reason it is necessary to make
succesgive approximations. In the first approximation
it is assumed that there is no shear lag; in this case
Yb=0 and 1 — (y./6) =0.5. The first approximation to

the substitute width is therefore bsl=%: and with this

width the first analysis is carried out as previously
discussed. The stresses or and ¢, are calculated for the
substitute single-stringer structure, and for each station
the ratio oi/or is calculated and used to determine the
value of Y5 from figure 14. The spanwise average of
Yb is then calculated and the corresponding value of
1—(y./b) is found from figure 15. This new value of
1—(y,/b) is inserted in formula (17) to obtain the second
approximation to bg, and the analysis of the substitute
single-stringer structure is repeated with the changes
necessitated by changing the substitute width.

If the stresses ¢ and o, obtained in the second
approximation differ very much from the stresses ob-
tained in the first approximation, a third approximation
may be made. On account of the rapid convergence of
the process, the difference between the first and the
second approximations nced not be very small to insure
that the second approximation may be taken as final.
It is suggested that the stress analyst work some
examples by means of the analyticel formulas given in
reference 2. As a rough guide, it may be stated that,
if the accuracy of the 10-inch slide rule is used as a
criterion, the second approximation may be con-
sidered as-the final one when the shear-lag parameter
- KL for the entire béam is greater than 4 in the first
approximation. When KL is about 7 or greater than 7
in the first approximation, the first approximation is
sufficiently accurste.  These relations are also in-
fluenced to some extent by the ratio A,/4,.

The outlined procedure should be slightly modified for
axially loaded panels. In such panels, the value of Y8
becomes infinite at the stalion where the axial load is
introduced. In order to avoid this difficulty, the span-
wise average of the ratios ¢./orshould be found and Y%
for the average ratio ¢1/or should be determined. This
method may be applied to beams in many cases and
the final results obtained by the two methods will be
the same, at least for practical purposes. It is prefer-
able, however, to use the two distinct methods to avoid
uncertainties in procedure.

The method given for finding successive approxima-
tions to s applies directly only when there are infinitely
many stringers. When there are only a few stringers,
the first approximation bs; ig not equal to 5/2 but is
determined by the centroid of the areas of the stringers
as discussed in connection with figures 11 (b) and 11 (¢).
In such cascs, it may be assumed that the ratio of a
higher-order approximation of by to the first approxima-
tion bs, is the same as though there were many stringers;

‘rest of the structure.
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any higher-order approximation to the substitute width
is then given by the expression

bs=2bsl(1 —1{,&)

where the factor 1-(y./0) is determined as before from
figure 15.

(17a)

METHOD OF SUCCESSIVE SHEAR-FAULT REDUCTION

Principle and scope of method.—The analysis of
multistringer structures by successive shear-fault reduc-
tion employs the same basic procedure that is used for
the analysis of single-stringer structures. Some mod-
ifications and additional concepts are, of course, re-
quired to adapt the method to the much more compli-
cated problem of analyzing multistringer siructures.

The process of successive shear-fault reduction in a
single-stringer structure consists in a repetition of
adjustments on a spanwise sequence of elements, It is
obviously not feasible to carry on such e process of
adjustments at the same time on chordwise sequences
of elements. In order to overcome this difficulty, a
concept will be introduced that has become quite
familiar through the Cross method of moment distribu-
tion, namely, the concept of locking parts of the strue-
ture in place to isolate the part being adjusted from the
The particular method of locking
employed herein consists in locking certain stringers at
a given siate of longitudinal strain, or, to use a descrip-
tive expression, in imagining them to be frozen solid.
The stringers locked at any given time are the stringers
to either side of the one being adjusted. The stringers
are adjusted in sequence, starting from the flange and
proceeding to the center-line stringer. The process is
repeated until the agreement between successive cyeles
of the computation is considered satisfuctory.

The method is obviously more laborious than the
substitute single-stringer method. It is very general,
however, and is capable of taking into account chord-
wise variations of stringer spacing, stringer arca, sheet
thickness, and shear modulus; it can also deal more ste-
cessfully with structures having a very small number of
stringers (two or three).

In practice, it will probably be found advantagcous,
in general, to use the substitute single-stringer method
to obtain a first approximation. Average values are
uséd wherever necessary. The method of shear-fuult
reduction can then be used to improve the accuracy of
the results.

The method of shear-fault reduction has one advan-
tage that may be helpful al times. After the constants

have been computed and the first cyele has been com-

pleted, the work involved in suceeeding eycles is so
simple that it can be handled by computers with little
engincering training.
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Procedure for computation.—The computation is
staried by assuming initial values for the stresses in all
stringers A to F (fig. 16), taking care that at each sta-
tion the summation of the internal forces equals the
external force Af/h or P.

The flange A is adjusted first. In order to cffect
this adjustment, the stringer B is locked at the state of
stress initially assumed. The computation then pro-
ceeds in practically the same manner as described for
single-stringer structures; the only difference is that
the values of oy, (in this case ¢z} are not changed but
remain the same for all cycles. After a number of
cycles—say five cycles—the adjustment of stringer A
is stopped, and stringer A is locked at the state of stress
just computed.

Before the adjustment of stringer A was started,
static equilibrium existed between the internal stringer
stresses and the external load at cach cross section.
Arter the adjustment, equilibrium no longer exists;
before the adjustment of stringer B is started, it will

A B ¢ D E F

AT L re s S A AR
<
FiaURE 16

e necessary to restore this equilibrium. To this end,
the stresses in stringer B are increased or decreased
so that the summation of the internal forces at each
station again equals the external force.

With these corrected stresses acting in stringer B,
the adjustment of stringer B is started. Stringer A is
locked at the stresses obtained from the first process of
adjustment; stringer C is locked at the stresses initially
assumed. The detailed form of the computation is
shown in table 12 of part ITI and differs from that used
for single-stringer structures only in so far as necessary
to take into account the fact thet there is a sheet and
a stringer on either side of the stringer being adjusted
instead of only one sheet and stringer on one side.

Columns 1, 2, and 3 of table 12 give the values of the
stringer stresses g., gg, and op. They are listed in
this sequence to separate the values of ¢. and o,
which remain constant during the adjustment of
stringer B, from the stresses ¢z and the other quantities
that change during the adjustment.

Columns 4 to 7 give the computation of the shear
force in the panel between stringers A and B; all
properties of this panel are denoted by the superseript
AB. .

705889 O - 46 - 13

Columns 8 to 11 give the computation of the shear
force in the panel between the stringers B and C; all
properties of this panel are denoted by the superseript
BC. )

Colump 12 gives the difference between the shear
forces in the two panels for each bay

D=AS¢x—AScs
Column 13 gives the force Fp=0pAp.

Column 14 gives the increments AFp.
Column 15 gives the shear fault

SF=D—AFg
Columns 16 to 19 give the shear-fault correction

stress Acp in analogy with the columns 11 to 15 of the _

gingle-stringer computation.

After several cycles—say five cycles—the adjustment
of stringer B is stopped, and the stringer is locked at
the stresses thus obtained. . The process of adjustment
has again upset the static equilibrium; that is, the ex-
ternal force at any cross section will not be exactly
balanced by the summation of the internal stringer
forces assumed to exist at this stage. Static equilib-
rium is restored as before by increasing the stresses in

C. _

Stringer C is now unlocked and adjusted, and the
procedure of adjusting and restoring equilibrium is
continued until the center stringer is reached. The
entire process is then repeated several times until suc-
cessive values of all stringer stresses in the structure
are in sufficiently close agreement. _ o

"In the case of & cambered cover, it is necessary to
introduce the same modification as discussed for single-
stringer beams, based on the modified basic equation
(1c¢”). After column 4 of table 12 a column must be
added for [(¢..— ag)— (e4F — o57)]; similarly, after column
8 a column must be added for [(sg—oc)}— (o5 —0cF)].

ANALYSIS OF CUT-OUT EFFECTS

Principle and scope of method.—The most convenient
and the most rapid method of analyzing structures
with cut-outs is the indirect, or inverse, method. The
analysis by the indirect method is made in two steps.
First, the structure is analyzed for the basic condition
that exists before the cut-out is made. The results
of this basic ansalysis are used to calculate the internal
forces that exist along the boundary of the proposed
cut-out. External forces equal and opposite to these
internal forces are then introduced; these external
forces reduce the stresses to zero slong the boundary
of the proposed cut-out, and consequently the cut-out
csn now be made without disturbing the stresses.

The external forces introduced to reduce the stresses
elong the boundary of the cut-out to zero will be called
the “liquidating” forces, a term used by R. V. South-
well in a somewhat different meaning. In general, it
will be impossible to caleulate accurafely the stresses
that these liquidating forces set up at a distance from

the stringer that will be adjusted next, namely, stringer
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the cut-out.
permissible because the. liquidating forces form self-
equilibrated systems so that, by St. Venant’s principle,
their effects become negligible at some distance from
the cut-out. In order to obtain numerical answers,
however, it js necessary to make very stringent sim-
plifying assumptions, and the method. can therefore
he applied only Lo reasonably small cut-outs.

The treatment given here is confined to structures
having distinct stringers. For cases in which the
stringers and the skin are fused into a homogeneous
unit, it is preferable to use the standard methods of the
theory of elasticity; some solutions of the cut-out
problem for such cases may be found in publications on
the theory of elasticity.

Effects of removing a skin panel. —Flgure 17 (a) shows
the internal shear forces that exist alopg the edges of &
skin panel bounded by two stringers and two ribs.
The directions of the force arrows are the positive

Roo# f
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Figure 17.—Effects of rémaving & skin panel,

dircetions in accordance with the general sign conven-
tions. In order to reduce the shear stresses along the
edges of the panel to zero, external or liquidating shear
forces are introduced as shown in figure 17 (b), which
are equal and opposite to the internal shear forces; only
the forces acting on the main siructure are shown in
figure 17 (b) because the strcsses in the skin panol itgelf
are of no intercst.

In most practical cases, tho stringer arcas nnd the
skin thicknesses just outboard of the cut-out are the
same as those just inboard of the cut-out. The
stress-distribution set up by the liquidating forces will
then be symmetrical about & chordwise line bisecting
the cut-out. Figure 17 (c) shows schematically the
stresses sef up in the stringers with the signs appropriate
to the case where the basic stresses-are positive. The
figure indicates stresses only for the two stringers
bordering the cut-out; tiie stresses in the other stringers
are small enough (as will be shown experimentally in
pt. III) to be neglected in view of the fact that the
changes in stress distribution caused by a small cut-out
are small compared with the basic stresses. . '

The assumption that the hqmdatmg forces of ﬁgul ¢
17 (b) set up stresses only in stringers C and D is

" wise.
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Some simplification of the problem is | equivalent to assuming that the skin panels BC and

DE are rendered inoperative by slotting them length-
- Under this assumption, the problem becomes
identical with the problem of the free panel shown in
figure 18. The analytical solution for the free panel is
given in reference 1; for the present purpose it can he
simplified by assuming that the strueture is very long
on either side of the cut-out. The forees in the stringers
inboard and outboard of the cut-out are then given by
the formula

P=tgniler (182)
where 7, is the basic shear stress existing in the panel
before the cut-out is made, ¢ is the thickness of .the
panel, L is the length of the eut-out panel, and K is the
shear-lag parameter defined by

Gty1, 1
K=g(G+4;) (18h)
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FIGURE 18B.—Free panel,

The signs of the stringer stresses set up by the liqui-
dating forces P are indicated in figure 17 (c) for the
case of & positive basic shear stress ro. The shear
stresses set up by the Hquidating forees are given by

T=%TQKL6‘K‘ .

and are of such a direction as to increase the basic shear
stresses. Within the region of the cut-out, the stringer
forces vary linearly between the maximum values
obtained by setting #=0 in formula (18a). The con-
vention for measuring » in formulas (182) and (18¢)
is shown in figure 17 (a).

The shear stresses given by formula (18¢)} are prob-
ebly conservative hecause some of the shear load is
taken by the adjoining panels, which are assumed to be
inopcrative -in this simplified theory. Converscly.
allowance must be made for increased shear stresses in
the adjoining pancls. Considerations of continuity

indicgle that, in the immediate vicinity of the corners

of the cut-out, the maximum shear stresses in the .
adjoining panels BC and DE of figure ‘17 should be
taken as equal to the maximum stresses given by
formula (18¢). '

(18)
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Effects of cutting stringers.—Figure 19 (&) shows a
cut-out obtained by removing three skin panels and
cutting two stringers. The effects of removing the
skin panels can be calculated by the method described
in the preceding section. The effects of cutting the
stringers are represented by the liquidating forces P
shown in figure 19 (a). The liquidating forces cause
compressive stresses in the cut stringers and tensile
reactions in the uncut stringers if the basic stresses are
positive, that is, tensile. By analogy with the preced-
ing case of the skin panel, it may be assumed that the
tensile reaction to the liquidating forces is entirely
furnished by the two stringers bordering the cut-out;
the stress system shown in figure 19 (b) is based on this
assumption, and the numerical solution is obtained by
considering -one cut stringer and the adjacent con-
tinuous stringer to work together as a free panel.

EQOOfFT € H I

———

8 c D

et

Tio ¥ (2)
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where b denotts temporarily the effective half-width of

the cut-out. The tests to be described in part III
indieate, however, that, even when only one stringer is
cut, it is justifiable to assume that several of the con-

tinuous stringers participate in furnishing the reaction __

to theliquidating forces. The simplest assumption that
can be made about, the participation of other stringers
is expressed by setting

Ap=Ag+Age "+ AP+ . .. @

when formulas (19) are used. The stresses caused by
the liquidating forc_:es are then

0'a=0'g_=P2!A2
o= (22)
a’;=o‘1¢"‘m‘

B H |

()

Fravre 19.—Eflects of cutling stringers.

The solution for the frec panel (fig. 18) of infinite
length is

-Pl= P3=P8_KF (198.)
0’1=P1/A1 0‘1=P2/A2 ¢ (19b)
r=1tPKe"xs (19¢)
_with K defined by
Gt/ 1 1
R _1+E) (19d)

If symmetry about a longitudinal line through the center
of the cut-out is assumed, the numerical solution for the
cut-out is obtained in the first approximation by
setting in formulas (19b) and (19d)

A=Ag=Ar Ay=Ap=As d=b (20)

When only one stringer is interrupted, half of it is con-
sidered as constituting 4;. When n stringers are inter-
rupted, the n/2 stringers on each side of the cut-out are
considered to constitute A;, and they are assumed to be
concentrated at their common centroid to determine b,

It is apparent that the use of formula (20) will be
conservative for stringers D and G and the skin panels
between them but somewhat unconservative for
stringers and panels distant from the cut-out. _

At present, insufficient theoretical or experimental
knowledge is available to define the limits within which
the method presented here may be safely used. It
would seem advisable to consider this method as giving
only e first approximation when more than three
stringers are interrupted by the cut-out. The method
of shearfault reduction must be resorted to in such
cases to improve the accuracy of the results.

[T
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II. EXPERIMENTAL VERIFICATION OF THE
THEORY OF SHEAR LAG

TEST OBJECTS AND TEST PROCEDURE

New NACA tests.—Previous experimental investiga-
tions on shear lag have been generally confined to panels
and beams of constant cross section; it was therefore
considered desirable to obtain experimental verification
on a beam with a variable cross section. Although the
cross section can be varied in & number of ways, it was
deemed most important and instructive o verify the
influence of tapering the cross-sectionel arca of the
" stringers.

A skin-stringer panel was therefore built as shown in
figure 20 and tested in three different set-ups. A photo-
graph of the second set-up is shown in figure 21. In
order to obtain a sensitive check on the theory, the panel
was designed for large shear-lag effects by using a large
ratio of stringer area to sheet area.

The tension panel was then converted into a beam by
adding shear webs; a cross section of the beam is shown
in figure 22, and figure 23 shows the inside of the beam
with strain gages set up at one station. This beam is
designated beam 1. Beam 1 was also tested with two
small cut-outs and two large cut-outs located symmet-
rically to the longitudinal axis. Figure 24 shows a
strain-gage set-up on the beam with the large cut-outs.

After the cut-out tests were completed, the heam was
cut off just outboard of the first bulkhead, producing a
very short wide beam, designated beam 2. The test
set-up for this short beam is shown in figure 25.

FIGURE 21.—Test set-up {or panel,
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It was alsé considered desirable to verify the validity
of the theory in the limiting case of a beam without
stiffeners. The dimensions of & beam built for this pur-
pose, designated beam 3, are given in figure 26, and the
test set-up is shown in figure 27. In order to obtain a
sensitive check on the theory, the beam was made
quite short.

As indicated in figure 26, beam 3 was tested in two
conditions: first without corner flanges (original cross
section) and then with corner flanges consisting of flat
strips riveted to the cover as close to the corner as pos-
sible (modified eross section). . :

The beam was built and loaded symmetrically about
8 transverse plane; it was thus possible to realize the
condition of a built-in end and at the same time to
measure strains direetly at the root section.

- fi-l: - :-mz T

=2 Ixixs [ , =_I

J

e 3% x 2 Strip from root fo midpoird
F1aurx 22.—Cross section of beam 1. Cover of heam Is panel shown in figure 20.

= A
FiGURE 23.—Test set-up for beam 1.

FieURE 24.—Test set-up for beam 1 with cat-outs.

FIGURE 25.—Test set-up for heam 2.

439 {
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" (s} Side view.
(b) Original cross section.
(e} Modified cross section.

FIGTRE 26.—Beam 2. Sheet 24S-T, E=I10.6XI10%; siringers 245-T, E=10.3X10%
Bulkheads not shown on cross sectlons.
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FigvRE 20.—Dlagram of Ieading cases for panel. P=1200 pounds.

All strain readings were taken with 2-inch Tuckerman
gages. These gages were always used in pairs on op-
posite sides of the sheet or the stringer to eliminate as
far as possible the effects of local bending. Temperature
variations during the tests were confined to 1°F,
limiting the error in stresses to about 50 pounds per
square inch.

The load was applied in four equal steps in all of the
cases except one, in which case three steps were used
(beam 1, casa 4). The stress readings plotted corre-
spond to the highest test load used but were obtained
by drawing the best-fitting straight lines through the
load-strain plots and correcting for zero shift when nec-
essary. The friction of the loading apparatus was
mesasured several times during the tests and was found
to be 2 percent, unless otherwise noted on the spanwise
stress plots. Corrections have been applied for friction.

Young’s moduli for the stringers were determined
from ceveral specimens cut from the beams after the
tests had been completed. For the sheet used to man-
ufecture beam 3, the modulus was determined from
several test coupons cut from the same sheet from which
the beam was fabricated. The moduli obtained are
noted on the drawings of the specimens.

In all these tests the buckling stress of the sheet was
never exceeded enough to cause an appreciable reduc-
tion in the average shear modulus. In many tests
there was no visible buckling at all.

01d tests reanalyzed.—Because the methods of anal-
ysis proposed in thig paper sre relatively new, it seems
desirable to buttress them with as many experimental
verifications as possible. An effort was therefore made
to secure all available test results and to analyze them
by the proposed methods. It was found, however, that
many published tests were of doubt: value for fur-
nishing quantitative checks because ver thin sheet that
buckled at low loads had been used in hese tests; the
effective shear modulus could not, therefore, be calcu-
lated with sufficient accuracy for a quantitative check.
The tests considered usable were 2 tesf on & compression
panel made by White and Antz (reference 4) and two

beam tests reported in reference 5. The beam tested
in reference 5 is shown schematically in figure 28.

TEST. RESULTS AND COMPARISONS WITH THEORY

Methods of analysis used.—All calculations were
made by analyzing the substitute single-stringer struc-
ture by means of the recurrence formula. The stresses
in the stringers were computed by using the method of
chordwise distribution as. described in part I of this
paper, including the correction for a finite number of

stringers. Unless otherwise noted the calculated re-

sults shown as curves in the figures are those obtained
with the second approximation for the spbstitute width.

Part T does not give explicit rules for determining the
width b; of the idealized sheet between siringers when
the stringers are arranged as in beam 1. The sheet was
assumed to be clamped between the opposing stringers
with an effectiveness of 50 percent; in other words, the
calculations were made as though the stringers were
attached by two rows of rivets separated by half the
width of the stringers. )

New NACA tests,.—The panel was tested under three
conditions, as schematically indicated in figure 29.
Figures 30 to 32 show the experimental and the caleu-
lated results in the form of spanwise plots of stress,
Figures 33 and 34 show the corresponding chordwise
plots for the first two cases. :

The agreement between experiment and theory is
very satisfactory except near the root in cases 1 and 2.
The experimental points in this region scatter badly
about a mean line (figs. 33 and 34). Integration of the
measured stresses over the cross section gives internal
forces that agree within about 5 percent with the exter~
nal load, indicating that the strain measurements are
fajrly accurate but that there was some irregular be-
havior of the structure. It was thought that this ir-
regularity might be caused by play in the bolt holes at
the root; several holes were therefore carefully reamed
out for the next larger size of bolts before making the
beam tests, and the chordwise plots of stresses for the
beams were much more regular.
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Beam 1 was tested under the four loading conditions
shown in figure 35. The spanwise stress plots are
shown in figures 36 to 39. The agreement between
tests and theory is very satisfactory for the most highly
stressed stringers near the flange and for the flanges
themselves, except for the fact that the experimental
stress in the flange at the station nearest the root is
slightly high in cases 1 and 4. In the stringers near
the center line, the experimental stresses are higher than
the calculated stresses near the root in cases 1, 3, and 4.
It is believed that the discrepancy can probably be
charged to the assumption that the sheet was 100 per-

Figure 41 shows the results of test 1 on beam 3.
Because the beam is symmetrical about the longi-
tudinal axis as well as the transverse axis, there are four
stress values for each station. It will be noted that in
most cases the four values agree very closely, which
indicates that the beam showed excellent symmetry of
strain about both axes.

This test is a rather crucial test on the range of
validity of the theory. It has been held by some
investigators that the theory of shear lag as developed
in this paper would not apply to the limiting case where
the elements of the cover carrying shear (the sheet
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FiovRE 32.—8tresses in panel, case 3.

cent effective in contributing to the stiftener area.
There are fairly consistent indications from a number of
tests that this assumption is too optimistic when the
ratio orfo. is large. A similar observation was madein
reference 6. This remark applies both to the compres-

sion side when the stresses are below the buckling

stresses for the sheet and to the tension side. On the
compression side, the well-known effective width of the
sheet must be used when the sheet has buckled.

The results on beam 2 are shown in figure 40. In view
of the fact that this beam has an extremely small ratio
of length to width as well as a small shear-lag parameter
K, the agreement is excellent,.

panels) and the elements carrying normal stresses (the
stringers) are merged into a single unit, namely, a sheet.
Figure 41 shows that this opinion is too pessimistic; the
agreement is not perfect, but the maximum flange
stresses, which are of paramount interest for design,
are predicted fairly well.

The main difficulty in applying the theory to the case
just discussed lies in the fact that Ay becomes very
small compared with A,; the flange area consists only
of the area % hf, which expresses the participation of
the shear web in the bending action. For small ratios
of Ar to A, the shear-lag parameter K becomes very

large and sensitive to errors in Ay, The difficulty is
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obviated when 2 corner flange of reasonable area is
provided; in built-up structures, such a corner flange is
usually provided in the form of an angle for riveting
the cover to the shear web. In beam 3, a corner flange
was provided by riveting flat strips along the edges, as
shown on the second cross section in figure 26. The
test results for this condition are plotted in figure 42
and show excellent agreement with the theory.

Old tests.—Figure 43 shows the experimental and
the calculated results for the compression panel de-
scribed in reference 4.

Figure 44 shows the results of the test on the beam
described in reference 5 for a load applied at the tip.
Figure 45 shows the test results for the same beam under
loads distributed as indicated in figure 28. The agree-
ment is fairly satisfactory.

Cut-out tests.—The appromnate method of enalyz-
ing cut-outs described in this paper is based on the
assumption that a pair of equal and opposite forces
applied to adjacent stringers does. not affect other
stringers very much. A special test was made on
beam 1 to verify directly the validity of this assump-
tion. Two equal and opposite forces of P=1162 pounds
were applied to bolis at the intersections of the rib at

midspan with stringers D and E. Figure 46 shows
the experimental stresses and the stresses ealculated
under the assumption that only stringers D and E are
stressed.

f

NI,

P P
Case / Case 2
¥
L) T T
: P P
¥ 1 l §
P P P P P
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FiGURE 35—Diagram of loading cases for beam 1. P=600 pounds on each shear
web for ceses 1, 2, and 3; P=235 pounds on each shear web for cass 4,
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Figure 47 shows the results of the test on beam 1
with small cut-cuts located as shown by the sketch
only the skin was cut out in this case.

Figure 48 shows the results of the test on bea.m 1
with large cut-outs located as shown by the sketch and
in figure 24. The agreement between theory and
experiments for the cut-out tests is very satisfactory
except for the discrepancies already noted in the
tests on the same beam without cut-outs.
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Frovre 40.—Compmrisons between caleulated und exiirimonted stresses in beam 2,
Frietlon, 4 percent.

IIl. NUMERICAL EXAMPLES
IDEALIZATION OF CROSS SECTIONS

Problem 1.—To find the idealized cross section of a
beam with open-section stiffeners:

The actual cross section of the beam is shown in
figure 49 (a). The effective width of the sheet for
normal stresses is to be taken as w=20f. _

The idealized width d for shear deformation (fig. 11)
is equal to the width between rivet rows, that is, 4
inches.

The area of the idealized flange is obtained by adding
the following areas:

REPORT NO. 73—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

A Square inch
Corner angle. .- oo iaiiireee 0. 300

Skin from corner to rivet line (0.375%0.040). . 015
Equivalent of web (4X6.00X0.065)_._..._. .085
. Area of idealized flange_ - . ... ___. _ 0. 380

The first stringer immediately adjacent to the Hange
consists of only the effective width of skin; the area
s :

20X0. 040X0. 040=0. 032 square inch
Each of the next two stringers consists of a stiffencr
and a double strip of skin; the area of each idealized
stringer is therefore

4=0.200+42X20X0. 040:X0. 040=0. 264 square inch

The stringer at the center line has one-half this area,
or 0. 132 square inch.

The total urea of the longitudinals is
A,=0.03240.2644-0.264 + 0.132=0.692 square inch

The idealized cross section is shown in figure 49 (b).

Problem 2.—To find the idealized c¢ross seetion of »
heam with closed-section stiffencrs:

The aclual cross seelion of the beam is shown in
figure 49 (¢). The effective width of the sheet is to be
taken as w=201.

The effective width & for shear deformation is, by
formula (13),
by 1.50
1 +0 .080XX1.50

0.040X3.00

The idealized width from the flange (o the first stringer is
therefore

—=0.75 inch

d=3.25+%><0.75=3.03 inches

and the idealized width of the second und third panel is
d=2.50+0.75=3.25 inches

The areas of the flange Ay und of the first small stringer
are the same as in problem 1.

The area of the second as well as of the third idealized
stringer is obtained by adding the following areas:

Sgquare inch
Hat section . oo o ccccemm e e e, 00260
Skin between rivets (1.5%0.040)... ... _._. ... .0G0
Two strips of skin (220X 0.0400.040) ... .. . 0G4
Ares of idealized siringer. . ... ..o 0. 384

The stringer at the center line has onc-half this area, or
0.192 square inch.
The total area of the longitudinals is

A.=0.032+40.384+0.3844-0.192=0.992 square inch

The idealized cross section is shown in figure 49 (d).

==
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ANALYSIS OF A MULTISTRINGER BEAM, OBTAINED BY
THE USE OF THE SUBSTITUTE SINGLE-STRINGER
METHOD AND THE RECURRENCE FORMULA

Given data.—Figure 50 shows the idealized form of a
beam; the problem is to find the stresses in this beam
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Frouar 41.—Comparisons befween calculated and experimental stresses in beam 3,
case 1. Friction less than 4 percent.

under the load indicated by the use of the substitute
single-stringer method and the recurrence formula.

This idealized beam is very nearly identicel with the
ideslized form of beam 1 discussed in part II. The
following simplifications have been made: The slightly
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tepering effective width of beam 1 has been replaced
by & constant width; the slightly tapering effective
depth, with & discontinuity at the midspan, has been
replaced by a constant depth; the load has been located
exactly at the tip instead of at the actual location of
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F1aURE 42.—Comparisons between calculated and experimental stresses fn beam 3,
case 2. Friction less than 34 percent, Third approximation.

0.56 inch from the tip. None of these deviations
amountsg to more than 2 percent at any point;the results
obtained in these numerical examples can therefore be
compared quite closely with the corresponding cal-
culeted curves shown in part II.
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From the data given in figure 50, table 1 has been
prepared to give the data in the form required for the
analysis.

First approximation to the substitute single-stringer
structures.—The first approximation to the substitute
single-stringer structure is obtained by combining the
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referenco 4. .
stringers constituting A, into a single stringer located
at the centroid of A;. As indicated in figure 50, this
centroid is located 6.28 inches from the flange, and
this distance is by definition the substitute width in
the first approximation.

The computation of the coefficients required for the
analysis of the substitute beam is shown in table 2.
The values of Ay and A, are the same as for the actual
structure and are obtained from table 1. The shear-lag
parameter K is calculated from formula (4). The
substitute width bg just found is used where & appears
in this formula, so that '

Gt _040X0.015

o/ 5.08 0.000956

The coefficients p, ¢, and 4 are calculated by formulas
(3a), (3b), and (3c); because & and { are conatant in
this particular beam, the common factor Gf has been
omitted from all coefficients.
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With the coefficients computed in table 2, the system
of equations for the X-forces (first approximation) is
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written in conformance with equations (5). The
boundary conditio.s are X,=0 and v,+=0.

—X;(C. - *00+0.1388) 4- X(0.1182) = —66.74-66.5
X1(0.1182) — X4(0.13884-0.1376) + X4(0.1190) = — 66.5 1 60.3
X3(0.1190) — X,(0.1376+ 0.1362) + X(0.1191)=—=66.3+ 66.1
X;3(0.1191) — X (0.1362 4 0.1358) - X;(0.1200) == — 66.1+ G6.0
X,(0.1200) — X;(0.1358+ 0.1347) + X(0.1201) = —66.0 4 66.0
X5(0.1201) — X4(0.1347) = —§(6.0
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Stations
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These equations are then solved, and table 8 gives the
final computation of the stresses in the substitute beam

as obtained from formulas (9a) and (9b).
Second approximation to the substitute single-

stringer structure.—The calculation of the second
approximation begins with the last two columns of
table 3. The parameter Y% is obtained from figure 13
for each station, and the average value of Y5 is com-
puted. From figure 15, the value of 1— (y./b) corre-
sponding to this average value of Y5 is read, and the
second approximation to the substitute width is ob-
tained by formula (172). Actually it is not necessary to
compute the second approximation of bs; it is possible
to proceed directly to the new values of the shearlag
parameter K by dividing the values of K given in table 2

by the expression +/2[1—(y;/B)]. Table 4 gives the

the ratio ¢1/s»=0.585, and the corresponding value of

¥5=1.760 from figure 13. This value of ¥ is entered
in table 6, and the values of Yy for the two intermediate
stringers B and C are calculated by proportion and
entered in column 2. Next, the hyperbolic cosines are
entered in column 3. The stress in the center stringer
D is now calculated by formula (186)

gcr= 2%%02—1673 pounds per square mch

and entered in column 4. The stresses in the stringers

B and C are then calculated by formula (14) and entered -

in column 4.

Column 5 gives the cross-sestiona] areas of the string-
ers A, and column 6 gives the internal forees cd,,.
The sum of these forces will not equal the force o4, on
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FIGURE 50.—Beam used for numerical examples.

new values of K and the computation of the new set of
coefficients p and ¢ for the recurrence formula. Table 5
gives the values of the X-forces and the final stresses
in the beam for the second approximation. Asa check,
the average value of Yb is again computed, and the
corresponding value of 1— (y./d) is found. The factor
V&1 —(y.J)] differs by only 1 percent from the factor
obtained in the first approximation; the second
approximation may therefore be considered the final
approximation.

Calculation of chordwise distribution of stresses.—
After the final approximation to the stresses in the
substitute beam has been computed, the chordwise
distribution of the stresses in the actual beam can be
found. As an example, the calculation will be shown
in detail for station 5.

According to table 5, 0=5000 pounds per square
inch and ¢;,=2673 pounds per square inch for station 5;

TOG%09 O - 456 - 14

account of the finite number of stringers, and a correc-
tion must be applied to all of the sgresses o except to
the stress in strmger A; the stress in stringer A must
necessarily remain equa.l to or.

The correction is made as follows: The force Fy is
oA, =2673X0.771=2060 pounds. The force in stringer
A is 140 pounds, as shown in column 6; the total
force that must be supplied by the center stringer D
and the two intermediate stringers B and C is therefore
2060—140=1920 pounds.
nal forces in the three stringers B, C, and D as given in
column 6 is only 1715 pounds; the stresses « given in
column 4 must therefore be muitiplied by the factor
1920/1715=1.120 to obtain the final values of_the
stresses ¢, which are listed in column 7. As a check,

the internal forces are again computed with the cor-

rected values of o; the summation ‘checks exactly with
the force Fr=2060 pounds.

The summation of the inter--. -
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The calculation of the chordwise distribution of

stresses is made in the same manner for each station;
the results of the calculations are given in table 7.

ANALYSIS OF MULTISTRINGER BEAM WITH CUT-OUT

It will be assumed for the example of a multistringer
beam with cut-out that a cut-out is made in the beam
shown in figure 50 end analyzed in the preceding ex-
ample; the skin panels AB and BC and the stringer B
are removed between stations 3 and 4%, corresponding
to the large cut-out in beam 1 described in part II.

The effects of making this cut-out are to be found.

*  Effects of removing skin panel AB.—The total shear
force in the skin panel AB between stations 3 and 4}
is found by statics with the stresses given in table 7;
it is equal to the sum of the forces in stringers B, C, and
D at station 4% minus the sum of the forces in the same
stringers at station 3. The result of the simple calcu-
lation is ri#L=484 pounds.
lation of the parameter K by formula (18b). In this
case, the cut panel is bounded by stringers A and B;
the areas A and Ap of formula (18b) are therefore
replaced by A4 and Az. In order to be consistent with
the assumption thaet the structure is the same at the
two ends of the cut-out, the values of A4 and .Ap used
will be those valid for the middle of the eut-out. Form-
ula (18b) gives therefore .

_0.40X0.015/ 1 1 \_ '
K=0.1038 . - :

After these preliminary calculations, the solution can
be carried out in tabular form as shown in table 8. The
value of P at stations 3 and 4% is }74L=242 pounds;
at the other stations P=242¢"%% pounds according to
formula (18a). The calculation of the stresses P/A,
and P/Ajp is self-explanatory.

Effects of removing skin panel BC.—For panel BC,
the shear force is found by subtracting the internal
forces in stringers C and D at station 3 from the forces
at station 4%; the result is

1t L==195 pounds

The value of X is found from.

_o.40><_0.015( ] 1 )_ ,
R'==3%35 \o371 To271)~0-0122
K=0.1104

Table 8 shows the details of computing the stresses
P[Ap and P/A¢ caused by removing the skin panel BC.
The last four rows of the table give the stringer stresses
in the beam, obtained by superposing on the stresses of
table 7 the stresses caused by removing the two skin
panels AB and BC. The signs of the stresses are deter-
mined by comparison with figure 17 (c); at station 3,
for instance, S - : g

cp=2370-+945—381=2934 pounds per square inch

The next step is the. calcu-.
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where 945 pounds per square inch is the stress caused
by removing panel AB, and 381 pounds per square inch
is the stress caused by removing panel'BC.

Effect of ocutting stringer.—According to the stresses

listed in table 8, the stress in stringer B at station 3is

c5=2934 pounds per square inch. The internal force at
the outboard end of the cut-out is therefore 2934X
0.256=752 pounds. At the inboard end of the cut-out,
the force is 2614X%0.287=750 pounds. The region
around the cut-out is now divided into four free panels
so that formulas (19) can be used. Two of these panels
are inboard of the cut-out; for the first panel

A[=%'AB and Ag'——- AA
for the second panel
Ar=gAs arid dy=Ac+e Ay
by formula (21), all areas being those at station 4%.
For simplicity, it will be assumed that the two panels
have the same shear-lag parameter K, and A will be

computed by using the average of the two given values
of A;. The result is

_ 0.40X0.015/ 1 1 )_
K==—35%5 (O.358+0.1435 =0.01618
K=0.127

for the inboard panels.

The other two free panels are outboard of the cut-out
and are defined in the same manner; the calculations are
made with the areas at station 3,  The shear-lag param-
eter is given by

_ 0.40X0.015/ 1 1 )_ ,
K'=="3%5 0318 T0.128)= 001813
K=0.1347

The calculation itself is given in table 8. The stresses
caused by cutting stringer B shown in this tablo are
superposed on the final stresses shown in table 8 to
obtain the final stresses in the stringers. The stresses
in stringer D caused by cutting stringer B are obtained

by formula (22) as e~' P/A,.

When the results of this computation are compared
with the curves in figure 48, it should be borne in mind
that an additional small eorrection must be made for the
actual test because removal of the skin panels reduces
the areas A, and A, in the region of the cut-out.

ANALYSIS BY SUCCESSIVE SHEAR-FAULT REDUCTION

Analysis of single-stringer beam,—The method cf
analyzing a single-stringer beam by successive shear-

" fault reduction will be demonstrated on the substitute

gingle-stringer beam analyzed previously by the recur-
rence formula. The basic data for the beam are those
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given in table 1; for the substitute width, the second
approximation bs=6.28X1.090=6.85 inches was used.
As the initial assumption, the stresses in the flange were
arbitrarily assumed to be 1.40 times the stresses given
by the Ae/I formula. Table 10 gives the first cycle of
the computation; a comment on the form of the com-
putations is given in part I of this paper. Table 11
gives the second cycle of the computation, starting with
the values of or found at the end of the first cycle.
As a general check on the computations, the sum of the
shear faults is shown for both cyeles; it will be noted
that it has decreased from 843 to 764 pounds.

Anglysis of multistringer beam.—As an example for
the analysis of a multistringer beam, the beam of
figure 50 is egain used, and a typical cycle of gdjust-
ment for stringer B is shown in table 12. Because the
exemple is illustrative, the stress values o,, o, and oc
were not assumed arbitrarily but were taken from table
7, the final result of the previous analysis. Tho shear
faults are therefore very small, and the adjusted stresses
op are practicelly identical with the initial stresses.
The smell differences that exist arise from two reasons.
The first reason is the limited numerical accuracy of
the process. This numerical accuracy is determined by
the number of bays used and the accuracy of multipli-
cation and division. These operations were carried
out with a 10-inch slide rule in all numerical examples
given in this report. The second reason for the failure
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of table 12 to show exact agreement between the initial
and the final values of o5 lies in the slight differences
between the basicassumptions. Therecurrence formula
is based on the assumption that the cross section is
constant in each bay, but the stresses vary nonlinearly
in each bay. The shear-fault reduction method, on the
other hand, assumes that all stresses vary linearly in
each bay.
CONCLUSION

The theory of shear-lag action presented in this
paper is based on the concept of idealized structures
consisting of stringers carrying longitudinal stresses,
of sheet carrying shear stresses, and of transverse ribs
infinitely closely spaced and of infinite stiffness. The
test results indicate that this theory is acceptable as a
basis for practical stress analysis because, in general,
the differences between test results and calculated re-
sults in the critical regions are smaller than occasional
scatter of test results caused by uncontrollable ir-
regularities in the behavior of the structure.

LaxeLEy MEMORIAL AERONAUTICAL LABORATORY,
NaTmioxar Apvisory CoumurrTEE For AERONAUTICS,
Lawnerey Fieup, Va., March 7, 1941.
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APPENDIX A

SYMBOLS
cross-sectional ares, sq in. o -direct (normal) stress, Ib/sq in.
Young’s modulus, Ib/sq in. T shear stress, lb/sq in.
internal force, lb o basic shear stress existing before & cut-out is

effective shear modulus, Ib/sq in.

geometric moment of inertia, in.* .
static moment of area about centroidal axis, in.?
shear-lag parameter (equation (4))

length, in.

bending moment, in.-lb

external load, 1b

shear force, 1b

shear fault (equation (8S-3)) .

shear-fault correction (equation (SS-4))

auxiliery parameter (equation (14))

half-width of structure, in.; with numerical
subscripts, distance between stringers
(fig. 12), in.

developed width, in.
depth of beam, in.
thickness, in.
effective width N
distance parallel to center line
distance from center line
shear strain
202

made, Ib/sq in,
Supersecripts have the following significance:
P theoretical values based on the assumption that
plane cross sections remain plane
Subscripts have the following significance:

C cover sheet

E ‘external (applied)

F flange

L longitudinal

S substitute

8t stringer

T total

W shear web _

CE ocqurring in the cover sheet and obtained by

the elastic relation

CL center line
1 inboard

) outboard
av .average

e -effective



APPENDIX B
COMPARISON BETWEEN DIFFERENT SOLUTIONS OF THE SHEAR-LAG PROBLEM

The basic shear-iag problem is the problem of a box
beam with constant cross section. In 1930 Younger
published a solution of this problem (reference 7). In
1937 there was published a slightly different solution,
the constantstress solution (reference 1). In 1938
Reissner published & third solution (reference 8). If the
flange efficiency 7 of a box beam is defined by the ratio
of the Me/T stress to the actual flange stress, all three
solutions can be reduced to the same form, namely,

tanh F
=—x
where F is a function of the geometrical and the physi-
cal properties of the box. This function ¥ is defined
as follows:

F=1.571 L‘\/ E {Younger, reference 7)

F= 1.414EJ % (Kuhn, reference 1)

1 720b [E
F= 1'73215\/%

It will be seen that the three solutions are identical in
form and differ only slightly in the numerical constant.

All three solutions involve some simplifying assump-
tions, and any one of the three could be used equally well
as a basis for building up approximate solutions for
beams of variable cross section. All three solutions,
however, lead to the result that the flange efficiency is
constant along the span. A glance at figures 41 and 42
indicates that this result cannot be more than a rough
approximation; the flange stresses on these figures are
not straight lines. For this reason, the treatment of
the beam with variable cross section as presented in
this paper was not based on any of these solutions.

Of the three basic solutions given, only Reissner’s
solution is of such a nature that the underlying assump-
tions can be physically realized without difficulty (con-
stant cross section, concentrated load at tip). At the
time of publication, it was stated that the solution is
applicable only when the cover consists of corrugated
sheet (reference 8); it was stated later (reference 9)

(Reissn‘er, reference 8)

that the solution applies also when the cover cousists-

of & flat sheet. Reissner’s solution is therefore shown
in figure 41; it will be seen that, at some distance from
the root, it is a fair approximation, but at the root the
experimental shearlag effect is nearly twice as large
as that predicted by Reissner’s solution.

The series solution given by Winny (reference 10)
is based on the same principles as the solutions listed
and is therefore open to the same objection in that it
cannot give more than a very rough approximation.
In view of this fact, the labor of using a solution by
series is hardly ]ustlﬁable
" The solution given by Goodey (reference 11) is
identical with the solution of the smgle—strmger beam
given in reference 1.
included in reference 1, namely, the case of uniformly
distributed loading.

A very complete and elaborate method of shear-la.g
analysis has been presented by Ebner and Kéller
{reference 12). The idealized structure consists of
stringers, sheet, and transverse ribs. The transverse
ribs are “finite in number and of finite stiffness; the
method is therefore more complete than the methods

a5 a5
= Z -A=4

t= 0.080
3Lt - - - - -—

ATE oy
T

i |
CaY
I‘_r---—- P
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-
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FiGuRE 51.—Beam used by Ebnrer-Kbller for numerical exampls (from reference 12).
G{E=0.385. Dimensions are in centimeter units.

presenied in this paper. Comparative calculations
made in reference 12, however, show that the rib
stiffness has only a sma.ll influence on the strmger
stresses so that the simplifying assumption of infinite
number and stiffness of the ribs resulis only in very
small errors. This conclusion drawn by Ebner and
Koller from their theory iz amply confirmed by the
good agreement between the experiments and the
snalyses presented in this paper.

- The method of reference 12 is rather difficult to
follow; comparisons have therefore been confined to
the analysis of numerical examples given therein by
the methods presented in this paper. The dimensions
of the structure ana.lyzed in reference 12 are g:ven in

figure 51. o
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Goodey slso gives one“case not
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FIoURE 52.—Ebner-KSller beam, load case I, analyzed by different methods.

Figure 52 shows the results for load case 1, which is
the case of an axially loaded panel. It will be noted
that in reference 12 there is given an “exact” method
as well as an approximate one, the approximate method
being recommended for practice because the exact
method is quite cumbersome. The solution made by
the substitute single-stringer method agrees with the
exact method .of reference 12 at all of the stations
except one within the accuracy of reading the values
from a small graph. The maximum difference between
the exact method and the present single-stringer method
is only slightly larger than the difference hetween the
two methods of reference 12 a.nd is ummportant for
design purposes.
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FiauRE 53.—Ebner-Edilar beam, load cass 2, analyzed by different methods. V=50
kilograms on each shear web.
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Figure 53 shows the results for the beam. The agree-

"ment between the solution of reference 12 and the single-

stringer solution of this paper is very close except at the
root, where there is a difference of 3 percent on the
flange stress and a difference of 20 percent on the stress
in the center stringer. The agreement between the
golution of reference 12 and the solution by successive
shear-fault reduction is good. .

It should be pointed out that this numerical exemple
represents the most severe test that can possibly be made
of the powers of the substitute single-stringer methaod.
The chordwise distribution method, which is an integral
part of this method, is based on the assumption that
there are infinitely many stringers; the half structure
analyzed here has only two stringers, which is not & very
close approximation to infinitely many stringers.

The example may serve as a warning, therefore, that
in such extreme cases, the method of shear-fault redue-
tion should be used to refine the approximation obtained
by the single-stringer method. From practical con-
siderations, the discrepancy found here between the
method of reference 12 and the substitute single-
stringer method is of little interest hecause structures
with only two stringers are not likely to be encountered
in practice.
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TABLE 1

BASIC DATA FOR ANALYSIS OF BEAM L
[G/E=0.40; k=6.18 in_; b=10.876 In.; £=0.015 In.; P=600 b ) _ _ e - -

»
) M -
Statfon | * 2 A& AL Ar M iy r -
(in) | Gain) | (sqin) | (sqin) | (Ibdn.) (b}  |(lbfsq in.)
] 1] 0.2 Qo 502 0. 731 Q 0 [}
. 1 8 .25 . 556 .812 4,500 7 956
2 16 283 .810 .83 9, 600 1504 1740
3 2% 310 .63 973 14, 400 2331 2395
4 a2 337 N7 1.054 19, 200 3108 2047
5 10 364 7L 1.135 24, 000 340
6 48 302 825 1217 | 28800 | 4662 3835 .
TABLE 2

COMPUTATION OF COEFFICIENTS FOR RECURREVCE FOR\IUL‘L (FIRST APPROXI\IATIOV)
[m:oooooae (A ) Ln&mfn.

1 I . AL
By | ooy | ei) | A & |atn| F = KL | tach BL | sinh X7 p e Ar Y
1 0. 242 0.5 413 189 er % oooers | aoms | oo oz 0665 | 010 | o1z | ooest | et
2 -2m 583 3.72 172 54 00520 | .o7m | .&@ .5:0 . 610 Jasg | .ms2 [ Less | eas
3 “286 2636 338 L& 496 -00413 | o8 | os® - 800 .58 (e | Lm0 | ey | 663
4 .33 .690 310 1.45 455 00435 | ‘osm | a8 e .53 (a6 | oLuw | ocemr | el
5 3% T4 2.8 L34 L2 200102 | 0833 | .86 467 .88 1358 | C1200 | -6 | eao
s 578 m8 2.65 L2 2.0 l00373 | 0610 | 488 483 -H8 1 | o0 [ Jeso | eso
TABLE 3 ' TABLE 5 o . e
STRESSES IN SUBSTITUTE SINGLE-STRINGER BEAM | STRESSES IN SUBSTITUTE SINGLE-STRINGER BEA\I . -
(FIRST APPROXIMATION) (SECOND APPROXIMATION)

[n-m. (x—’;—‘) =0.4%0 from fig. J& m- J—n_fﬁ-x.m]

[(x—'—: ..u.mtmmt'lx.u:.‘/2——(:_—!5_'7 JJT.-E"-""‘] |

X p T
o —_— [ — - - . S Tees
Sta- X A A £ Lt -
tion | GoAsa | ) | ik | OBSA | (g [ doBa| <f [ ¥ X X
in) m)y | 8 LS P I S [l [P A B gl g ol
: tion [ GSA | by | abisa | AT | dhisa [ DR o | YR
1 | g¢s8 a8 18 | 14 8 870 | oz | Loo ) i.”")
7 I 1 g8 | s0 | 18 | uw 72 ; 0.9
sE | B @) BE ) R L Pls s = | |
o | 3835 | 105t | 2000 | 6825 | 1z | 2887 w2 | 280 1) Mo | m5.] oo | B | me | m = | i
o - 5 3420 576 1580 5000 4T 27 L76
Total........[ 9.25 § [ 2835 | 987 | 2620 | 6355 | o5 | 2840 as | 240
Average..... .34
j Total.........| £62
Average. ... .. L4 -
TABLE 4 |
COEFFICIENTS FOR RECURRENCE FORMULA TABLE - T
(SECOND APPROXIMATION) BLE 6 ) o
. - ~ g COMPUTATION OF CHORDWISE DISTRIBUTION OF T
Bay -4 KL ({tach RLSIbh KL p s STRESSES AT STATION 5 )
U7 . . 11 Ay wiy
3 o5 | Ceoe | &7 | e | lims | lus Stelng-| vy jeoshyy| PhL| ddn ) (s o)
i ons | I3H 518 [ 606 | .16 | rsd Y o1 ® ®
& 0699 552 . 580 1374 1190 3 ® o
6 -0883 532 a7 | s | 138 | lnes
D.. o Loo0 |- 1673 | o140 | 20 18 | 2o
Clllsb | .esr | LIz | a8 | .27 | 385 2203 | 858
Bl &b L1k [ L2 | oees | v | st 3[) [ 88 L
A Tb] rTeo | 2¢92 | 00 | 028 | (e | S00 | 140 A
st 1718 2000
[-m;.—mxo.m-am Carrection [actor= gﬂ—l.lilil
030 Ib )

. I Uncarrected values,
t Cotrected values. o
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TABLE 7 _
CHORDWISE DISTRIBUTION OF. STRESSES IN BEAM
Btation | (bjedin) | abisqin) | Qb i) | (blegin)
1 1112 ' 952 840 800
2 - 2079 1714 1618 1440
3 2008 2370 1036 1790
4 3041 2878 2200 1985
& 5000 3320 2203 1873
(] 6355 3390 0% 1830
TABLE 8

EFFECT OF REMOVING SKIN PANELS

TABLE 9
EFFECT OF CUTTING STRINGER
FINAL STRINGER STRESSES

Station ] 5 414 3 2 1
z 12 4 0 Q 8 18
Effect of cutting stringer B
K 0. 1270 0. 1270 0, 12720 0. 17 0. 1347 Q. 1M7
Kr 1. 525 . 508 0 0 1.077 415
e~Ks v .801 1.000 1. 000 .30 i
P (ib) 81 b7 ] 76 §7a 128 44
Plaa 193 576 NS 1127 420 158
PrA, 512 1522 2814 2034 1000 406
PiAs 218 842 107 1248 460 171
e PfAy 8 236 . 907 450 1] [}
Final stringer stresscs

a4 (Ibfsq

In.{)/ 6708 5076 6087 3402 2164 1351
ez (Ibfaq

e 2750 1402 1] 0 958 091

ac (Ib/sq

in.) 2187 2631 3008 35871 2132 %
op (lbfsq

i} 1730 2108 77 250 159 o]

1870

1970

Station f 5 434 3 2 1
z 12 4 ) 0 .8 16
Effect of remuvlng-pan-el A.B )
Kr 1. 247 0. 418 ) 1] Q 0. 830 1. 660
e-K» 287 . 047 1. 000 1,000 . 430 . 190
P (1b) 9.5 L1867 42,0 2420 106. 6 46.0
Aa (8q in.) 422 . N2 377 . 2334 . 308 278
PlAa 185 400 642 725 346 167
Az {sqin) .318 . 297 . 286 . 256 . 235 218
PiA» 218 527 847 843 450 214
Effect of removing panel BC )

Er 1925 | o0.M2 | o 0 08 | L708
k= . 268 .43 .00 1.00 .414 . 170
£ (1b) 8.8 L7 97.8 7.5 40.4 16.8
PiAr g1 21 341 381 172 77

Ac 81 21 341 381 172 ™

Sfringer stresses after remo\.ring pan€ls AB and BC

« 4 (1bf:

Yoy 8516 5400 002 2276 17144 ne
v 5(lb/aq :

in, 3262 2084 214 2034 2048 1097
ec(lbfeq

h(nlbf 18 1989 1899~ 24331 1672 927
v 3q

n[n.) 1850 1800 1430 820
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. TABLE 10
ANALYSIS OF SINGLE-STRINGER BEAM BY SUCCESSIVE SHEAR-FAULT REDUCTION—FIRST CYCLE - T
%—’%-o.m; tAr=0.016X8=0.120 sq In.]
1 2 3 4 5 s T s 9 0 | u 12 18 14 15 16 17 -
o o Fr | g [er—ec| Aar T | ASex | AR sF | src.| src. | src | ser | sm o “
B Stat : .
" SO aw | aw |5 | Opke (@i (M| @y | oam | aw [ aw [ @ | aw | | Obea [ dbkq | abis
0 0 ) a 0 .
1 3683 | 440 a5 +5 1
1 1338 | 342 [ 435 | 73 | sss | 2 — | -3 —o] —a5 | 416 [ 1303 | oo
2 3404 | 408 @ | -2 '
2 2435 630 | &85 1420 1015 474 ! —19 +6 -13 —48 +2i 2389 1441
3 2930 352 26 | —u
3 3350 | 1040 | 121 | 1050 | 1400 | &4 ; -3 | 4w | —19 | —e | 420 | 3zs0 | 2000
4 228 | 2 25 [ —1m2 ' o
4 ag0 | 1302 | 1m6 | 2400 | weo | 807 . —62 | 438 | —2¢ [ —m | +a¢ | so50 | 208
E 1480 | 178 a4 | —2u8
5 4700 | 1745 | 2140 | 2780 | 2010 | @30 ~8 | a2 | —2 | —7m | 4a¢ | &m0 [ 2ms
[ 530 64 416 —352
s 5370 | 2006 [ 2556 | 3100 | 2270 | 1080 488 | 488 | +o2o4 | —107 | Bssa | 2088
) : Z=—843
TABLE 11 ) L
ANALYSIS OF SINGLE-STRINGER BEAM BY SUCCESSIVE SHEAR-FAULT REDUCTION—SECOND CYCLE
S =2 m0.467; tar=0.015x8=0.120 30 In. |
1 2 3 4 5 6 7 8 9 10 1 12 T 14 16 16 :
B Stu- 7 Fr oz F—cL Ar T AScx | AFL SF SFC, | 8FCy | SFC Ak Asr, r . oL
&Y | tlon jabssq I.n.)_ (b)  |(b/sq In.){(bfsq In.}[(b/sq in.}|(Ibfsq in}| (Ib) (Ib) [185)] (Ib) (415} (Ib) |(Ib/sq in)]@b/sq In.}{¢Ibfsq In.)|(Ib/sq in.)
0 0 ¢ 0 0 ’
1 3578 429 44t -13 * A
1| 1303 ) 504 235 -] +8] -1 —4 +2 1269 801
2 3243 q00 | 438 | —as
2 | 2389 79 1441 M8 u3 —22 | 49 | 13 [ —46 +2 2343 1462
3 2900 248 | 43¢ | —s6
3 | s2m 1813 1970 1310 612 —zr | y22 [ —5 | —18 +8 3278 1987
4 2288 275 383 —108
¢ | 058 1806 2368 1693 1 _ - | tm | 45| -3 +63 26 2429
5 1497 180 | 460 | —289 ,
8 4719 2185 2814 1805 890 i} 472 -5 -14 +6 4705 2820
6 607 73| 805 [ —22
6 | 5534 470 2093 2601 1213 +17 |+ | —8 5781 2000 )
- Z=—7TB4 o




TABLE 12
ANALYSIS OF MULTISTRINGER BEAM BY SUCCESSIVE SHEAR-FAULT REDUCTION—TYPICAL CYCLE FOR ADJUSTMENT OF
' : STRINGER B
[%-%—s—mm; 1A7=0. 015X 8m=0.120 5q in.]
1 2 3 4 5 68 o7 8 9 10 1 12 13 14| 18 16 v 18 19 20
B:y Station] aa oc ox c4-o8 AraB TdB AS:: anoc e ArFC t R0 AS:: D Fa2 AFp SF | SFC, | S8FC: | SFC | -Asp ez
(ib/sq in.)|(Ibfeq n.}{(b/sq in.){(b/sq n.}{ Gb/sq In.)|(Ib/sq In)| () |(bjsq in.)|(bjsq in.}|(bjsq tw)| (b) (b) (1)) (b) (tb) (Ib) (Ib) @b) |(b/sq in.)|(b/sq in.)
0 0 0 0 (i
1 4608 564 2001 348 | 26 04 | -+12
1 1112 840 052 160 141 12 % 204 _ -1 -6 -7 +33 985
2 4555 547 2802 3 | 21 23 -2
2 2079 15 J 1 308 260 %6 226 417 +4 +H +5 -2t 1763
3 4286 51% 2576 310 | 205 189 | 416
3 2008 | 1038 2370 628 558 434 884 | 606 -1 —4 -5 420 2390
4 8781 448 2192 263 185 180 —4 i
4 3041 2200 * 2878 1066 042 8756 596 ™ —12 +1 | -1 40 2015
5 2780 5 1506 102 143 91 | —a8 /
5 5000 2208 3320 1680 1484 . 1117 986 088 -3 | +12 +9 ~80 2200
6 1308 w7 610 73 84 o | —10 .
6 €358 2020 3899 2056 | . 2610 “1379 1220 1080 43 +3 ~9 8290
Zm—86
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